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1 Introduction

Statistical inference is the process of drawing conclusions about an unobserved population

based on observed data, yobs. The conclusions drawn often are the parameters θ of the

underlying process leading to the data. Popularized in the later half of the 20th century,

the Bayesian approach provides a new and intuitive framework for statistical inferences

(Gelman et al., 2013).

In Bayesian inference, the complete knowledge about parameters of a model, θ ∈ Θ, is

obtained by combining a prior distribution (believes about the parameters before seeing

the data), π(θ), with observed data yobs ∈ Y through the likelihood function, π(yobs|θ)
(Young et al., 2005; Gelman et al., 2013). The result obtained from Bayes’ Theorem is

the posterior distribution:

π(θ|yobs) =
π(θ)p(yobs|θ)∫

Θ
π(θ)p(yobs|θ)dθ

However, in many cases where the model is complex, the likelihood function can be

intractable, and therefore, the posterior π(θ|yobs) cannot be evaluated. This challenge

can be addressed by using a simpler model. While a model that has fewer parameters or

is more tractable is more convenient to work with, it can potentially cause a loss of the

desired details that a more complex model would have (Sisson et al., 2018).

Under this context, approximate Bayesian computation emerged as a new framework that

approximates the inference process of the original model using simulation. Diggle and

Gratton (1984) proposed that inference about θ can be made by comparing simulated data

y with yobs. When the simulated data is the same as the observed data, this method would

produce an unbiased estimate of the likelihood function. However, the probability of an

exact match is negligible or 0 in most applications. Therefore, a more practical alternative

would be to consider the cases where the simulated data approximately matches the

observed data. This is the basis for standard ABC methods (Blum and François, 2010;

Drovandi et al., 2011; Fearnhead and Prangle, 2012; Sisson et al., 2018).

When dealing with high dimensional data, it is rare that ABC methods directly use

the full data set since it it highly unlikely that y ≈ yobs will occur due to the curse

of dimensionality. Having an summary statistics that can retain sufficient information

while significantly reduces dimension helps to attain better quality approximation for the

same computational cost. Therefore, summary statistics as well as methods for dimension

reduction have been a vital part in performing ABC (Sisson et al., 2018).

As comparing the simulated data with observe data is central to ABC, distance measure

is also a factor to be considered. Though the importance of distance measure is often

overlooked, it can significantly affect the quality and efficiency of ABC.
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In this study we aim to assess the performance of the ABC with different combination of

summary statistics and distance measure with or without the use dimension reduction.

As a part of this study, we will examine the effects of the choice of summary statistics and

distance measure has on how closely the result matches with that of the true posterior

as well as the potential benefit of dimension reduction methods. This would be done by

examining observed data generated from normal distribution.

The structure of this study is as follows. Section 2 gives some background information

about Bayesian inference and approximate Bayesian computation. In Section 3, we

conduct a literature review on existing summary statistics, dimension reduction methods

and distance measures. We introduce the procedures for the experimentation in Section

4, and present the results in Section 5. Section 6 is for discussion of the results and

conclusion.

2 Background

2.1 Bayesian Inference

In classical statistics, variable Y is considered to be random while parameter vector θ

is considered to be fixed. On the other hand, in Bayesian inference, both Y and θ are

treated as random variables with joint probability p(θ, y) = π(θ)p(y|θ) (Young et al.,

2005). From this, probability statements that are conditional on yobs such as posterior

π(θ|yobs) or posterior predictive p(y|yobs) can be produced.

There are generally three steps in Bayesian inference: constructing a joint probability

model for both y and θ, calculating the posterior distribution π(θ|yobs), and evaluating

the fit of the model. If necessary, one can modify the model and repeat the process

(Gelman et al., 2013).

The posterior is calculated by conditioning on the observed data yobs with Bayes’s

Theorem:

π(θ|yobs) =
π(θ)p(yobs|θ)

p(yobs)
,

where:

p(yobs) =


∫

Θ
π(θ)p(yobs|θ)dθ, θ continuous∑
Θ π(θ)p(yobs|θ), θ discrete

With fixed observed data, p(yobs) can be considered as a constant, and we can rewrite

the posterior density as:

π(θ|yobs) ∝ π(θ)p(yobs|θ)
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This may be written in word as:

posterior ∝ prior × likelihood

This expression highlight the importance the likelihood function. It allows observed data

to modify the prior knowledge of θ and influence the posterior (Box and Tiao, 2011;

Gelman et al., 2013).

2.2 Approximate Bayesian computation

Typically, the goal of inference is to calculate integrals with the posterior density such as

quantiles or predictive quantities (Gelman et al., 2013). However, the complexity of the

posterior distribution makes such integral impossible to be calculated directly. Therefore,

numerical methods such as the Markov Chain Monte Carlo (MCMC) or sequential Monte

Carlo (SMC) are employed to produce the necessary integrals. These methods require

that samples of θ can be drawn from the posterior distribution. For example, in the case

of the MCMC algorithm, Metropolis-Hasting, the integral is evaluated by drawing θ from

a Markov Chain with transition probability defined as α(θ, θ′) = min{1, π(θ′|yobs)q(θ,θ′)
π(θ|yobs)q(θ′,θ)

},
where q(θ, θ′) is some proposal density. Therefore, those methods still rely on the

evaluation of the likelihood function (Sisson et al., 2018).

In practice, explicit evaluation of the likelihood function can be impossible or impractical

when the model is complex. ABC provides a framework that utilize simulation to by pass

evaluating the likelihood function. This can be done because, even when the likelihood

function is intractable, simulating data from the model is often straightforward (Drovandi

et al., 2011). First, distances between simulations y generated from θ ∼ π(θ) and yobs

is calculated. To reduce to computational cost, distances can be calculated between

summary statistics instead of the data. Then, a set of θ that produces simulations close

to yobs is selected to form an approximated posterior (Blum et al., 2013).

Following Fearnhead and Prangle (2012), we can define the ABC posterior from the

following components:

i) a function S(·) which transform n-dimensional data y to a lower d-dimensional

summary statistic s,

ii) a distance measure ‖ · ‖,

iii) a standard smoothing kernel K(u) where u is d-dimensional and
∫
K(u)du = 1,

and

iv) a bandwidth, or scale parameter h > 0 of the kernel.
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Algorithm 1 ABC Rejection Sampling Algorithm

Input: the prior π(θ) and a procedure for generating data from the model p(yobs|θ),
π(θ|yobs) > 0,

a kernel Kh(u) with bandwidth h > 0,

an integer N > 0.

Sampling procedure:

for i = 1, . . . , N do

repeat

Generate θ(i) ∼ π(θ).

Generate y ∼ p(y|θ(i)).

until θ(i) is accepted with probability Kh(‖y − yobs‖)
end for

Output: θ(1), . . . , θ(N) ∼ πABC(θ|yobs)

The full data set yobs is replaced by the summary statistics sobs = S(yobs). From this,

the posterior distribution π(θ|yobs) is approximated as π(θ|sobs) ∝ p(sobs|θ)π(θ). An

informative summary statistic sobs yields a good approximation π(θ|sobs) ≈ π(θ|yobs) as it

retains a good amount of information of yobs. An exact sufficient sobs yields true posterior

π(θ|sobs) = π(θ|yobs).

Furthermore, as p(sobs|θ) is likely to be intractable when p(yobs|θ) is intractable, we can

construct the approximated posterior πABC(θ|sobs) ≈ π(θ|sobs), where

πABC(θ|sobs) =

∫
π(θ, s|sobs)ds (1)

with

π(θ, s|sobs) ∝ Kh(‖s− sobs‖)p(s|θ)π(θ) (2)

whereKh(·) is a smoothing kernel. The most basic kernel function is the indicator function

I(‖s − sobs‖ ≤ h), which is equivalent to an ”if ‖s − sobs‖ ≤ h” statement in algorithms.

This, however, means that there is no discrimination between a θ that produces ‖s−sobs‖
close to 0 and a θ that produces ‖s− sobs‖ close to h. Therefore, it can be more efficient

to use kernel functions that concentrate more at 0 and less further away. One simple

example of such kernel is the triangular kernel Kh(u) = (1 − |u/h|)I(|u/h| < 1) (Sisson

et al., 2018).

Two approximations to the posterior distribution made by ABC methods to allow

avoiding explicit evaluation of intractable likelihood functions were detailed by Blum et al.

(2013). Firstly, the full data set is replaced with summary statistics. Secondly, π(θ|sobs)
is replaced with πABC(θ|sobs) calculated in equation 1. With those approximations, ABC

aims to approximate the true posterior of θ so that it can be used for inference about θ.
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The approximation form will vary depending on S(·), K(·) and h. If S(·) is chosen as the

identity function, we can obtain Algorithm 1, introduced by Pritchard et al. (1999).

Additionally, when h→ 0, equation (2) becomes

lim
h→0

πABC(θ, y|yobs) ∝ lim
h→0

Kh(‖y − yobs‖)p(y|θ)π(θ)

= δyobs(y)p(y|θ)π(θ).

Therefore,

lim
h→0

πABC(θ|yobs) ∝
∫
δyobs(y)p(y|θ)π(θ)dy

= p(obs|θ)π(θ).

When h→ 0, the algorithm produces θ sample from the true posterior. Nonetheless, h = 0

is not practical as it corresponds with a zero acceptance rate for continuous distributions.

For a more general summary statistics S(·), an importance sampling version for ABC can

be implemented is as demonstrated in Algorithm 2. Unlike rejection sampling, importance

sampling requires a proposal density g(θ) to draw θ from, and θ values that produce s

close enough to sobs are given weight π(θ)
g(θ)

.

Algorithm 2 ABC Importance Sampling Algorithm

Input: the prior π(θ) and a procedure for generating data from the model p(yobs|θ),
a proposal density g(θ) such that g(θ) > 0 when π(θ|yobs) > 0,

a kernel Kh(u) with bandwidth h > 0,

an integer N > 0.

Sampling procedure:

for i = 1, . . . , N do

Generate θ(i) ∼ g(θ).

Generate y ∼ p(y|θ(i)).

Weight w(i) = π(θ(i))

g(θ(i))
is set for θ(i) with probability Kh(‖s− sobs‖), else set w(i) = 0

end for

Output: a set of {θ(i)}Ni=1 and the corresponding weights {w(i)}Ni=1

As demonstrated in the ABC rejection sampling algorithm and the importance sampling

algorithm, the two approximations detailed by Blum et al. (2013) circumvent the need to

evaluate the intractable posterior and likelihood function. However, it should be noted

that there is typically a trade-off between them. While large dimension of S(·) means

that the quality of the first approximation π(θ|yobs) ≈ π(θ|sobs) is good, it also reduce the

efficiency of the kernel smoothing, making the second approximation (2) poorer. On the

other hand, if S(·) has low dimension, which improves the bandwidth and the quality of

the second approximation (2), loss of information from the mapping would make the first

approximation poor.
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There have been much work to address this trade-off by developing more efficient sampling

algorithms such as Markov chain Monte Carlo and sequential Monte Carlo. However,

having a low-dimensional and near-sufficient summary statistic S(·) remains to be crucial

for achieving a good trade-off. Therefore, the choice of summary statistics is of central

importance in ABC (Blum et al., 2013).

3 Summary statistics and distance measures

3.1 Summary statistics

3.1.1 Overview

When dealing with high dimensional data, it is rare that ABC methods directly use

the full data set since it it highly unlikely that y ≈ yobs will occur due to the curse of

dimensionality. Having an summary statistics that can retain sufficient information while

significantly reduces dimension helps to attain better quality approximation for the same

computational cost. Therefore, reducing data to lower dimensional summary statistics

has been a vital part in performing ABC (Prangle, 2015).

In practice, there usually is a trade-off between quality and computing cost in ABC.

Applying summary statistics with low dimension or setting a large bandwidth reduce

computational cost, but also lower the quality of the approximation (Blum et al.,

2013). While having more complex or higher dimensional summary statistics and lower

bandwidth preserve better information, it also leads to an increase in computational cost.

One important characteristic aside from dimension of summary statistics is sufficiency.

In classical statistic, a summary statistic is sufficient if the conditional density π(y|s, θ) is

invariant to θ. More relevant to ABC, a summary statistics is Bayes sufficient if θ|s has

the same distribution as θ|y under any prior distribution and for almost any y. Concepts

and methods stemming from sufficiency such as approximate and asymptotic sufficiency

or comparing sufficiency results can also be useful in ABC (Prangle, 2015).

Naturally, a minimal sufficient statistic is the most efficient choice for ABC. However,

in practice, it is often challenging or unachievable to determine sufficient summary

statistics aside from the trivial full data set. Hence, there have been on going efforts

to develop methods for constructing summary statistics for ABC from low-dimensional

but insufficient summary statistics. Prangle (2015) divides summary statistic selection

methods into the following strategies: subset selection (with regularization also included),

projection, and auxiliary likelihood. All of those strategies require subjective inputs from

the user.
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3.1.2 Subset selection

Subset selection methods attempt to select an informative subset from a set of candidate

summary statistics z = (z1, z2, ..., zn). Some subset selection methods are: Approximate

sufficiency, entropy/loss minimization, mutual information, and regularization.

Approximate sufficiency method, proposed by Joyce and Marjoram (2008), attempts to

determine the optimal subset by adding or removing one summary statistic at a time

and evaluate the effect on the ABC posterior. The incentive of the approach is if S(·)
is minimally sufficient, adding more summaries will not change π(θ|sobs) while removing

any will.

Nunes and Balding (2010) suggested a two-stage approach, entropy and loss minimization.

The motivation is that the more informative the posterior is, the lower is its entropy.

Summaries subset are first selected by minimizing entropy, then further optimize the

chosen subset by minimizing root mean square loss.

Mutual information method was introduced by Barnes et al. (2012). The mutual

information between S(y) and θ is maximized when the S(·) is sufficient. With this,

S(·) is sufficient when the Kullback-Leiber (KL) divergence of π(θ|sobs) and π(θ|yobs) is

zero: ∫
π(θ|yobs) log(

π(θ|yobs)
π(θ|sobs)

)dθ = 0.

From this, the subset is selected in a stepwise manner, adding a summary statistic to the

subset until the improvement to the KL divergence is below a threshold.

Sedki and Pudlo (2012) and Blum et al. (2013) suggested regularization approaches that

find an informative subset by fitting a linear regression with response θ and variables z.

Variables are then selected stepwise by minimizing AIC or BIC.

The subset selection methods allow for intuitive interpretation of the results. As such,

they are useful in making model improvements. However, all of the methods above can be

extremely computationally expensive. The first three approaches requires ABC to be run

many times (one for each subset of z). Therefore, they are only practical with rejection

or importance sampling ABC, which allows reusing of simulated data sets. Furthermore,

the number of test statistics in z in each method is also limited since the computational

cost increase drastically with the size of z (Prangle, 2015).

3.1.3 Projection

Projection methods aims to find an informative projection of z using training data (θ, y)

created by simulation. Similarly to the subset selection methods, projection methods also

require a vector of candidate summary statistics z(y) = (z1, z2, ..., zn).
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Wegmann et al. (2009) proposed to use partial least-squares (PLS) to choose informative

statistics from z. The motivation for this method is that PLS can objectively reduce the

dimension of the summary statistics while retaining the desirable amount of information.

PLS aims to construct uncorrelated linear combinations u of covariates of z that have

high covariance with parameters θ. The method chooses the first c components such that

the root mean square error of the linear regression of θ from u is minimized.

Another method is introduced by Fearnhead and Prangle (2012), which uses a linear

model to fit the training data: θ ∼ N(Az + b,Σ). The motivation behind this method is

that estimated parameters θ̂ from the linear regression is the optimal choice in term of

quadratic loss. The method first generates a set of simulated parameters and data. From

this, θ̂ are generated using linear regression and used as summary statistics. Alternatively,

θ̂ can also be produced by methods such as lasso or canonical analysis. The quality of

the linear regression estimate can be further improved by using BIC values to select good

z(y) features.

Aeschbacher et al. (2012) suggested using boosting to produce predictors θ̂(y) of E(θ|y)

to be used as ABC summary statistics. The procedure is repeated for each component

of θ. ”Weak” estimators are added one at a time to concentrate on data that was fitted

poorly in the previous step until a ”strong” estimator is formed.

All three methods require training data (θ, y). Wegmann et al. (2009) do this is drawing

θ from the prior and y from the model. Aeschbacher et al. (2012) perform a ABC using

all data features and use the result as training data for boosting. Fearnhead and Prangle

(2012) approach this differently by performing the pilot ABC using ad-hoc summary

statistics to find the training region from which θ will be drawn from.

Projection methods allows for a wider space of potential summary statistics as there

can be a larger number of features z(y) and they are not limited to the subset of z.

They also avoid the high computational cost that comes with repeating calculations as

in subset selection. However, this also make the results more difficult to interpret and

assess (Prangle, 2015).

3.1.4 Auxiliary likelihood

The auxiliary likelihood methods is an indirect approach that derive summary statistics

from a suitably chosen simpler auxiliary model with parameters φ and tractable likelihood

pA(y|φ). The motivation for this class of methods is that the sufficiency of summary

statistics derived from auxiliary models can be evaluated.

The indirect parameter estimates method (ABC-IP) defines the summary statistics as
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the maximum likelihood estimator under the auxiliary model:

s = φ̂(y) = argmaxφpA(y|φ)

Gleim and Pigorsch (2013) show that if the generative model (the original model of

interest) is nested in the auxiliary model, φ̂(y) would be asymptotically sufficient for

the generative model. Even though this is rare in practice, Bayesian consistency can be

attained allowing for discrimination between data coming from different parameters θ.

Introduced by Gleim and Pigorsch (2013), likelihood distance method (ABC-IL) is a

variation of ABC-IP. ABC-IL uses the log likelihood ratio of the auxiliary model between

the MLEs of observed data and simulated data as the distance measure:

‖φ̂(y), φ̂(yobs)‖ = log pA(yobs|φ̂(yobs))− log pA(yobs|φ̂(y))

φ̂(y) should behaves such that ‖φ̂(y), φ̂(yobs)‖ = 0 if and only if φ̂(y) = φ̂(yobs).

Gleim and Pigorsch (2013) also suggested taking the summary statistics as the score of

the auxiliary likelihood under φ̂(yobs):

s =

(
δ

δφi
log pA(y|φ)

∣∣∣
φ=φyobs

)
1≤i≤p

The motivation of the approach, ABC-IS, is that the score has the desired asymptotic

properties while being computationally cheaper as the numerical optimization is done

only once for φ̂(yobs). The underlying assumption for this asymptotic sufficiency is that

the data is more informative as n→∞.

The chosen auxiliary likelihood should have a reasonably small number of parameter. It

should also allow fast and accurate calculation of the MLE or score. Lastly, it should

have summary statistics that are informative of the generative model. This last criteria is

harder to judge, and can be approached by goodness-of-fit tests or the BIC as suggested

by Gleim and Pigorsch (2013).

Auxiliary likelihood methods also avoid the high computational cost of generating training

data or repeatedly running ABC, and the task of choosing data features that subset

selection and projection methods require. However, they are still met with a similar

decision of auxiliary likelihood, which demands subject area knowledge.

3.2 Distance measures

While the summary statistic has been a subject of central importance in ABC, there has

been less consideration on the role of the distance measure ‖ · ‖. Distance measures can

have a considerable impact on both the efficiency and the quality of ABC.
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Some of the most popular distance measures in ABC can be written in the form

‖s− sobs‖ = (s− sobs)TΣ−1(s− sobs).

Different choices of Σ will result in different distance measures. Specifying Σ as the

identity matrix gives us the Euclidean distance, Σ as the a diagonal matrix gives weighted

Euclidean distance, and Σ as the full covariance matrix gives the Mahalanobis distance.

The choice of Σ can have significant impact on the quality of the posterior approximation

and should be made with regards to the summary statistics. For example, if the summary

statistics has significantly different scalings, it should be more reasonable to choose Σ as

the diagonal or the full covariance matrix instead of the identity matrix; if there are also

known relationships between summary statistics, choosing Σ as the full covariance matrix

can be more optimal (Sisson et al., 2018).

4 Methods

In this study, the performance of ABC was investigated under varying factors: summary

statistics, distance measures, dimension reduction usage. The dimension reduction

method of choice for the study is the projection method using linear regression introduced

by Fearnhead and Prangle (2012). Section 4.1 outlines the steps of the experiment.

Section 4.2 describes the data samples as well as the simulation process. Section 4.3

provides more information regarding the choice of summary statistics and distance

measures. Section 4.4 introduces Wasserstein distance as a measure of the quality of the

ABC posterior. Section 4.5 gives some further practical details of the experimentation.

4.1 Experimentation procedures

The experiment for this study followed the steps below for each ABC run:

1) Draw sample data and compute the true posterior from drawn sample data,

2) Generate simulations and compute summary statistics,

3) Dimension reduction by linear regression,

4) Calculating distances ‖s− sobs‖,

5) Compute ABC posteriors using rejection sampling,

6) Calculate Wasserstein distances between the ABC posterior and the true posterior

for each combination of summary statistic set and distance measure.
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For each combination of statistics set and distance measures, simple rejection sampling

ABC without dimension reduction was also done to provide a base line for measuring

performance of the projection method.

4.2 Data and simulation details

The data samples yobs = (y1, ..., yn) are generated with yi ∼ N(µ, σ2) where both µ and

σ2 are unknown model parameters. The choice of prior is based on the conjugate prior

distribution for normal data presented by Gelman et al. (2013). This choice of conjugated

prior allows the true posterior to be generated and used as the reference to determine the

performance of ABC. Accordingly, prior for σ2 is the scaled inverse-χ2(ν0, σ
2
0) distribution.

The conditional distribution for µ given σ2 is N(µ0, σ
2/κ0).

The simulation process has the following steps. First, σ2 is drawn from Inv− χ2(ν0, σ0).

Then, µ is drawn from the conditional distribution N(µ0, σ
2/κ0). Finally, the simulated

data is drawn from N(µ, σ2).

From the conjugate prior, the true posterior is computed as follow:

σ2|y ∼ Inv− χ2(νn, σ
2
n)

µ|σ2 ∼ N(µn, σ
2/κn),

where,

κn = κ0 + n

νn = ν0 + n

µn =
κ0

κn
µ0 +

n

κn
ȳobs

s2 =
∑

(yi − ȳobs)2

νnσ
2
n = ν0σ

2
0 + (n− 1)s2 +

κ0n

κn
(ȳobs − µ0)2.

4.3 Choice of summary statistics and distance measures

For this experiment set up, four different sets of summary statistics were chosen. The

first set is the set of sufficient summary statistics, sample mean and variance. The second

set of summary statistic is a set of quantiles from 5% to 95% with 5% interval, which

is informative, but high dimensional. The third set of summary statistics is a set of

sample minimum and maximum values, which is highly non-robust. The last set of

summary statistics is a combination of statistics, including mean and variance, minimum

and maximum, and quantiles with 10% interval. This set mimics summary statistic sets

in practice, where there can be both reliable and unreliable summary statistics.
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Distance measures for this experiment include the three cases described in Section 3.2,

Euclidean, weighted Euclidean, and Mahalanobis distance. More specifically, we set Σ

for the weighted Euclidean distance as the diagonal of the covariance matrix, making it

standardized Euclidean. The covariance matrix was calculated from the data generated

by the simulations.

4.4 Wasserstein distance

In this study, Wasserstein distance is the choice of metric to measure the performance

of different combinations of test statistics, distance measures and ABC methods. This is

achieved by computing the distance between the ABC posterior and the true posterior

for each test case.

Wasserstein, or earth mover distance is a metric for measuring distance between

probability distributions on a given metric space M (Bernton et al., 2019). Informally, if

the distributions are viewed as piles of dirt, Wasserstein distance is the minimum cost of

turning one pile into the other by moving an amount of dirt by some distance.

The p-Wasserstein distance between distribution u and v belonging in the set of all

couplings on M ×M , Γ(u, v), is defined as

Wp(u, v)p = inf
γ∈Γ(u,v)

∫
M×M

ρ(x, y)pdγ(x, y).

For the simple case of univariate distributions such as the posteriors in this experiment,

the 1-Wasserstein distance can be written as
∫∞
−∞ |U − V |, where U and V are the

respective cumulative distribution functions.

The correlation between the similarity of two distributions and the Wasserstein distance

between them is demonstrated visually in Figure 1 in Section 5.

4.5 Implementation practicality

For this study, the experiment outlined in Section 4.1 was run 100 times. The sample

data yobs has 1000 iid observations generated from N(0, 1). The parameters chosen for

the scaled Inv-χ2 prior is ν0 = 16 and σ2
0 = 0.5. For each run, 1 million sets of µ, σ2,

and simulated data of 1000 data points was generated. The bandwidth h is not explicitly

defined, but was set as the 0.3% quantile of the set of distances ‖s − sobs‖. With the

triangular kernel, the acceptance rate for the ABC was between 0.03% and 0.1%.
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5 Results

The statistics set of sample mean and variance performed the best and most consistently,

with mean Wasserstein distance between 0.05 and 0.056. On the other hand, the

sample minimum and maximum had poor performances across all test case, with mean

Wasserstein distances from 0.247 to 0.253. ABC with quantiles and mixed summary

statistics performances showed more dependence on other factors, as shown in Figure 2

and Table 1 .

For the data model in this study, Euclidean distance produced the best results in most

cases, except in the case of mixed summary statistics without dimension reduction. For

most test cases, results of Mahalanobis distance closely matched those of standardized

Euclidean distance. However, Mahalanobis distance gave very poor results for quantiles

and mixed statistics without dimension reduction.

Overall, ABC with dimension reduction by linear regression showed significant improvement

for quantiles and mixed summary statistics and marginal effect for sufficient statistics.

Notably, the dimension reduction method produced vast improvement for the cases with

Mahalanobis distance mentioned above.

Table 1: Mean Wasserstein distance between ABC posterior and true posterior

Method Summary statistics Euclidean Standardized Euclidean Mahalanobis

Without

dimension

reduction

Mean and variance 0.0516 0.0558 0.0554

Quantiles 0.0701 0.0814 0.3048

Minimum and maximum 0.2488 0.2488 0.2476

Mixed 0.0854 0.0646 0.2306

Dimension

reduction

with linear

regression

Mean and variance 0.0508 0.0532 0.0557

Quantiles 0.0611 0.0641 0.0645

Minimum and maximum 0.2508 0.2528 0.2476

Mixed 0.0545 0.0582 0.0586
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Figure 1: Various ABC posteriors (histograms) with different level of fit measured by

Wasserstein distance, true posterior (solid line), and prior (dashed line). The posteriors

were obtained in a single run of ABC
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Figure 2: Wasserstein distance distributions of all the test cases. Left column shows

the baseline ABC results and the right column shows the results from ABC with linear

regression dimension reduction. Rows illustrate results obtained with Euclidean distance

(top), standardized Euclidean distance (middle), and Mahalanobis distance (bottom).
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6 Discussion and conclusion

The choice of statistics has the most substantial impact on the quality of ABC. As

expected, the sufficient statistic set of sample mean and variance yielded the results

closest to the true posterior regardless of other factors. Informative statistic sets such

as quantiles or mixed statistics yielded results that show some bias to the left toward

the prior such as in Fig. 1(b). This bias can be attributed to the high dimensionality of

the two statistic sets. Non-robust statistic set of sample minimum and maximum yielded

uninformative results that are clearly biased toward the prior as shown in Fig. 1(c).

Dimension reduction was shown to have significant impact on the quality of ABC

posterior. More specifically, the method proposed by Fearnhead and Prangle (2012)

improved the Wasserstein distance of mixed statistics to close to that of sufficient

statistics. This is achieved with a relatively low additional computational cost of the

linear regression step, taking 20 to 30 seconds in each ABC run that was approximately

600 to 700 seconds long.

For the notable cases of quantiles and mixed statistic sets combined with Mahalanobis

distance, the most probable cause would be the high correlation of statistics. As the

quantile statistics are highly correlated, the calculation of the inverse covariance matrix

required for the Mahalanobis distance becomes unreliable, making the distance measure

less effective.

In this experiment, the effects of distance measure were shown to be less pronounced

compared to that of summary statistics, although this could partly be attributed to

the simplicity of the chosen data model. More complex models with parameters of

various scales and correlations can reveal more about the effectiveness of different measure

distances.

In this study, the performance of ABC was investigated under various contexts. Through

the experiment, the central importance of summary statistics is reaffirmed. Dimension

reduction with linear regression was proven to be an effective method to improve the

performance of ABC, especially when sufficient statistics cannot be determined, and

sets of informative but high dimension statistics has to used. The study also showed

potential drawbacks of Mahalanobis distance when applied to high dimensional and highly

correlated summary statistics.

Finally, there are a few direction for this study to be extended. More complex models can

be chosen for the experiment to gain more meaningful insight to the impact of distance

measure. Moreover, factors such as sample size and number of simulations per run can

be varied. From this, we can have a more realistic view of how ABC perform under

additional constrains such as small sample size or limited computing power.
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